Detecting Changes in Unlabeled Data Streams Using Martingale

نویسندگان

  • Shen-Shyang Ho
  • Harry Wechsler
چکیده

The martingale framework for detecting changes in data stream, currently only applicable to labeled data, is extended here to unlabeled data using clustering concept. The one-pass incremental changedetection algorithm (i) does not require a sliding window on the data stream, (ii) does not require monitoring the performance of the clustering algorithm as data points are streaming, and (iii) works well for high-dimensional data streams. To enhance the performance of the martingale change detection method, the multiple martingale test method using multiple views is proposed. Experimental results show (i) the feasibility of the martingale method for detecting changes in unlabeled data streams, and (ii) the multiple-martingale test method compares favorably with alternative methods using the recall and precision measures for the video-shot change detection problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes

With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's ...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

We're Not in Kansas Anymore: Detecting Domain Changes in Streams

Domain adaptation, the problem of adapting a natural language processing system trained in one domain to perform well in a different domain, has received significant attention. This paper addresses an important problem for deployed systems that has received little attention – detecting when such adaptation is needed by a system operating in the wild, i.e., performing classification over a strea...

متن کامل

Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks

In this work, we propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection over unlabeled HTTP traffic streams in computer networks. The framework holds potential for self-managing: self-labeling, self-updating and self-adapting. Our framework employs the Affinity Propagation (AP) algorithm to learn a subject’s behaviors through dynamical c...

متن کامل

On the Detection of Concept Changes in Time-Varying Data Stream by Testing Exchangeability

Introduction In a data streaming setting, data points are observed one by one. The concepts to be learned from the data points may change infinitely often as the data is streaming. We extend the idea of testing exchangeability online [2] to a martingale framework to detect concept changes in time-varying data streams [P1]. •Two martingale tests using: (i) martingale values (MT1) and (ii) the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007